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ABSTRACT

In this paper, we present a novel framework for analyzing
video using self-similarity. Video scenes are located by an-
alyzing inter-frame similarity matrices. The approach is
flexible to the choice of similarity measure and is robust
and data-independent because the data is used to model it-
self. We present the approach and its application to scene
boundary detection. This is shown to dramatically outper-
form a conventional scene-boundary detector that uses a
histogram-based measure of frame difference.

1. INTRODUCTION

Video segmentation is an increasingly important problem.
Numerous video retrieval and management tasks rely on ac-
curate segmentation of scene boundaries, for example the
commercial video-logging system developed by Virage Inc. 1

In this paper, we describe a novel video analysis method
based on signal self-similarity. This approach facilitates
scene boundary detection and other video characterizations.
A particular benefit of this work is that it effectively uses the
signal to model itself, making minimal assumptions about
the nature or genre of the target video. We present scene de-
tection performance of several videos from different genres,
judged against a baseline hand segmentation and a standard
segmentation algorithm based on the histogram difference.
For each video, the self-similarity algorithm outperforms
the standard segmentation technique.

2. SIMILARITY ANALYSIS

We detect scene boundaries by considering the self-similarity
of the video across time. For each instant in the video, the
self-similarity for past and future regions is computed, as
well as the cross-similarity between the past and future. A
significantly novel point in the video, i. e. a scene boundary,

1www.virage.com

will have high self-similarity in the past and future and low
cross-similarity between them.
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Fig. 1. Diagram of the similarity matrix embedding.

Video frames are parameterized and are then embedded
in a 2-dimensional representation [1]. Figure 1 shows how
the distance measure is embedded. A measure D of the
(dis)similarity between frame parameters ~vi and ~vj is cal-
culated for every pair of video frames i and j. The matrix
S contains the similarity measure calculated for all frame
combinations i and j such that the (i; j)th element of S is
D(~vi; ~vj). Time, or frame index, runs along both axes as
well as the diagonal. In general, S will have maximum val-
ues on the diagonal (because every frame will be maximally
similar to itself); furthermore if D is symmetric then S will
be symmetric as well.

S can be visualized as a square image such that each el-
ement (i; j) is given a gray scale value proportional to the
similarity measure D(i; j), and scaled such that the maxi-
mum value is given the maximum brightness. These visual-
izations let us clearly identify structure within a video. Re-
gions of high similarity, such as a long sequence of identical
frames, appear as bright squares on the diagonal. Repeated
sequences are visible as diagonal stripes or checkerboards,



offset from the main diagonal by the repetition time. For ex-
ample, the similarity matrix of panel (a) in Figure 2 is from
a golf instruction video, in which shots of golf swings are
repeated, separated by fades. Shots are apparent as bright
squares on the diagonal; similar shots can be seen in the off-
diagonal rectangles. The repetitive structure of the video is
apparent in the closeup of panel (b). From the manual seg-
mentation of the golf video, there is a scene break at frame
7317. Subsequent frames show a golf shot followed by a
fade. The shot is repeated at frame 7564. In the closeup of
the similarity matrix, the shot frames, the fade from frames
7500-7564, and the repeated shot are all visible. Finally,
there is a second fade and a new scene which begins at frame
7797. Each of these boundaries are clearly exhibited in the
similarity matrix. The similarity between the repeated seg-
ments is also evident from the diagonal lines offset from the
main diagonal by the repetition time. An advantage of this
approach is that the exhibited structure is derived entirely
from the current video rather than from predefined models
or parameterizations. There are minimal prior assumptions
regarding the video content, which is an essential require-
ment for numerous applications.

3. IMPLEMENTATION

3.1. Computing the Similarity Matrix

Each frame is parameterized by the simple measure of con-
verting each pixel to a greyscale representation by summing
RGB values. A 30-bin intensity histogram is then com-
puted, which serves to characterize each frame. These his-
togram features are compared using the (nonlinear) cosine
distance measure

D(~vi; ~vj) =
~vi � ~vj

k~vik k~vjk
: (1)

3.2. Scene Segmentation Via Kernel Correlation

Consider a simple 10-frame video consisting of two differ-
ent “scenes”, each with 5 identical frames. When visualized
by coloring regions brighter according to similarity, S will
look like a 2 � 2 checkerboard. White 5 � 5 squares on
the diagonal correspond to the two scenes, which have high
self-similarity; black 5 � 5 squares on the off-diagonal are
regions of low cross-similarity. Finding the scene boundary
transition is as simple as finding the center of the checker-
board. This can be done using a classic matched filter: cor-
relating S with a kernel that itself looks like checkerboard
[2]. We will call this class checkerboard kernels. Perhaps
the simplest is the 2� 2 unit kernel
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: (2)

For automatic scene segmentation, we correlate the Gaus-
sian checkerboard kernel (panel (c) of Figure 2) along the
diagonal of the similarity matrix S. The result is a one-
dimensional function of time (frame index), as shown in the
bottom of Figure 3. Intuitively, the correlation emphasizes
regions with strong self-similarity while penalizing regions
with significant cross-similarity. As illustrated in Figure 3,
peaks in the correlation indicate locally novel points in the
video, which we label as scene boundaries.

Algorithm 1 Self-Similarity Based Scene Change
Localization

1. Compute cosine similarity matrix

(a) Transform every tenth frame from RGB to inten-
sity (greyscale) image

(b) Compute histogram of intensity image

2. Compute correlation along diagonal of similarity ma-
trix with Gaussian checkerboard kernel (Figure 2(c))

3. Locate peaks via analysis of the first and second dif-
ferences of the output signal

4. Label peaks as scene boundaries

3.3. Enhanced DCT Features

As a further enhancement of our algorithm, we investigated
advanced features based on low-order discrete cosine trans-
form (DCT) coefficients. Instead of intensity histograms,
this implementation processes every 10th frame and trans-
forms the individual RGB frames into the Ohta color space
according to:
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In this color space, the three channels are approximately
decorrelated [3]. The DCT of each channel is computed and
a feature vector is formed by concatenating the resulting low
frequency coefficients of the three channels. These feature
vectors are compared using the cosine distance measure and
Algorithm 1 is used to compute the scene boundaries.

4. EXPERIMENTS

Algorithm 1 was compared against the popular approach
based on thresholding the Euclidean distance between inter-
frame intensity histograms (e.g. [4]). The histogram-based
algorithm is summarized below.

Algorithm 2 Histogram Based Scene Change Localization

1. Compute Euclidean inter-frame histogram distance



(a) Transform every tenth frame from RGB to inten-
sity (grayscale) image

(b) Compute histogram of intensity image

(c) Compute Euclidean distance between current his-
togram and previous (ten frames previous) his-
togram

2. Locate peaks via analysis of the first and second dif-
ferences of the inter-frame distances.

3. Label peaks exceeding threshold as scene boundaries

To assess performance, two figures of merit are com-
puted to construct receiver operating characteristics (as in
[4]):

Recall =

Correct Scene Changes

Correct + Missed Scene Changes
(4)

Precision =

Correct Scene Changes

Correct + False Scene Changes
: (5)

To control the behavior of Algorithm 1, we vary the size
of the kernel used. The kernel’s size is proportional to the
expected average segment size within the video. To vary
the recall and precision, we segment the videos with the
size of the kernel ranging from 21 to 71. To explore the
high-precision and low-recall performance of Algorithm 1,
we used thresholds for the extracted peaks from the corre-
lation with the 71 by 71 kernel. To vary the performance of
Algorithm 2, the threshold for labeling scene boundaries is
varied.

Automatic scene segmentation experiments were per-
formed using 10000 frames from each of three videos: a
golf instructional video, a cartoon video (“Knighty Knight,”
also analyzed in [4]), and a music variety show (“The Live
Music Show” from [5]). Manual segmentations were per-
formed for comparison against the two automatic methods.
The manual segmentations produced a total of 181 scene
boundaries including both cuts and fades. The performance
of the two approaches is summarized by the receiver op-
erating characteristic of Figure 4. Figure 4 shows three
curves: the solid curve for Algorithm 1 with DCT features,
the dashed curve with crosses for Algorithm 1 with his-
togram features, and the dashed curve with squares for Al-
gorithm 2. At every level of recall, both self-similarity ap-
proaches outperform the histogram-thresholding approach,
and the self-similarity approach using the DCT features per-
forms best of the three.

5. RELATED WORK

Space does not permit more than a brief overview of the
large number of video segmentation algorithms; for a good
review see [4]. The 2-dimensional distance matrix has been
used to visualize text [6] and time series [7] but no analysis
or segmentation was performed. Similar techniques have

been used to analyze and segment audio by one of the au-
thors [2].

6. CONCLUSION

We have presented a novel video segmentation algorithm
and demonstrated its performance. Better features based on
color and shape further improved the segmentation. Though
on first inspection it seems that Algorithm 1 requires O(n2)
computations, this is not the case in practice. For segmen-
tation, there is no reason to calculate similarity matrix val-
ues further from the diagonal than the extent of the kernel,
which is typically a small constant. Thus the algorithm can
be computed in O(n) computations, and can be computed
on-the-fly as long as a small frame buffer (the size of the
kernel) is available. Additionally, because both the sim-
ilarity matrix and the kernel will typically be symmetric,
many computations are redundant: only one half of the ma-
trix and the kernel need be computed and correlated. Thus
the algorithm is quite competitive with seemingly simpler
approaches such as histogram differences.
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Fig. 2. Panel (a) shows a similarity matrix computed per
Algorithm 1. Panel (b) shows a closeup of Panel (b) reveal-
ing the structure of repeated scenes within a single video
segment. Panel (c) shows the Gaussian checkerboard kernel
used to identify scene boundaries.
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Fig. 3. The top panel shows a similarity matrix computed
from the Home Video in [5] using DCT features. The bot-
tom panel shows the kernel correlation (Algorithm 1). The
dashed lines indicate correspondences of peaks in the kernel
correlation to boundaries in the similarity matrix.
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Fig. 4. The receiver operating characteristic curves for
the automatic scene segmentation of the three videos. The
dashed curves represent results using the histogram features
(Algorithms 1, the line with crosses, and 2, the line with
squares) and the solid curve represents results for the kernel
correlation technique with DCT features(Algorithm 1).


