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Abstract

This paper presents a novel approach to visualiz-
ing the time structure of musical waveforms. The
acoustic similarity between any two instants of an
audio recording is displayed in a static 2D repre-
sentation, which makes structural and rhythmic
characteristics visible. Unlike practically all prior
work, this method characterizes self-similarity
rather than specific audio attributes such as pitch
or spectral features. Examples are presented for
classical and popular music.

1. Introduction
There has been considerable interest in making music

visible. Efforts include artistic attempts to realize images
elicited by sound, of which the Walt Disney film Fantasia is
perhaps the canonical example. Another approach is to
quantitatively render the time and/or frequency content of
the audio signal, using methods such as the oscillograph and
sound spectrograph [1,2]. These are intended primarily for
scientific or quantitative analysis, though artists like Mary
Ellen Bute have used quantitative methods such as the
cathode ray oscilloscope towards artistic ends [3]. Other
visualizations are derived from note-based or score-like
representation of music, typically MIDI note events [4,5].

Music is generally self-similar. With the possible
exception of a few avant-garde compositions, structure and
repetition is a general feature of nearly all music. That is, the
coda often resembles the introduction and the second chorus
sounds like the first. On a shorter time scale, successive bars
are often repetitive, especially in popular music. This paper
presents methods of visualizing music by its acoustic self-
similarity across time, rather than by absolute acoustic
characteristics. Self-similarity is visualized in a two-
dimensional time representation such as Figure 1. This
representation presented here is very flexible and can be
used with practically any parameterization of audio. Besides
audio, similar representations have been used to analyze text
[7], video [8], hypertext links [9], and dynamical systems
[10].

2. Similarity Analysis
An audio file is visualized as a square. Time runs from

left to right as well as from bottom to top. In the square, the
brightness of a point  is proportional to the audio

similarity at instants i and j. Similar regions are bright while
dissimilar regions are dark. Thus there is always a bright
diagonal line running from bottom left to top right, because
audio is always the most similar to itself at any particular
time. Repetitive similarities, such as repeating notes or
motifs, show up as a checkerboard patterns: a note repeated
twice will give four bright areas at the corner of a square.
The two regions at the off-diagonal corners are the “cross-
terms” resulting from the first note’s similarity to the second.
Repeated themes are visible as diagonal lines parallel to, and
separated from, the main diagonal by the time difference
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Figure 1.  Self-similarity of Bach’s Prelude No. 1 
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Figure 2.  Distance matrix calculation



between repetitions. 
To calculate the similarity between two audio “instants,”

they are first parameterized using the short-time Fourier
transform or using Mel-frequency cepstral coefficients.
Given two feature vectors  and  derived from audio
windows i and j, a simple metric of vector similarity s is the
scalar product of the vectors. This will be large if the vectors
are both large and similarly oriented. To remove the
dependence on magnitude (and hence energy, given spectral
features), the product can be normalized to give the cosine
distance between the vectors:

To visualize an audio file, an image is constructed so
that each pixel at location i, j is given a grey scale value
proportional to the similarity measures described above.

Note that the actual parametrization is not crucial as
long as “similar” sounds yield similar parameters.
Psychoacoustically motivated parameterizations, like those
described by Slaney [6], may be especially appropriate if
they match the similarity judgments of human listeners.

2.1  Bach Prelude No. 1

Figure 1 shows roughly the first two bars of Bach’s
Prelude No. 1 in C Major, from The Well-Tempered Clavier,
BVW 846. This 1963 piano performance is by Glenn Gould.
The visualization makes both the structure of the piece and
details of performance visible. 34 notes are visible as
squares along the diagonal. The repetition time can be seen
in the off-diagonal stripes parallel to the main diagonal, as
well as the repeated C note at 0, 2, 4, and 6 seconds. Figure
4 shows the first three bars of the score: the repetitive nature
of the piece should be clear even to those unfamiliar with
musical notation. Figure l3 shows yet another similarity
image of the same music, derived directly from the MIDI
data. Here, no acoustic information was used. Matrix entries
(i,j) were colored white if note i was the same pitch as note
j, and left black otherwise.

2.2  Beethoven’s Fifth Symphony

Not only can acoustically similar audio be located, but
structurally similar audio should be straightforward to find,
by comparing similarity matrices. For example, different
performances of the same symphonic movement will have a

similar structural visualization regardless of how or when
they were performed or recorded, or indeed the instruments
used. Figure 5 shows the self-similarity of the entire first
movement of Beethoven’s Symphony No. 5. Two
visualizations are shown, each from a different performance
featuring different conductors (Herbert von Karajan and
Carlos Kleiber) and orchestras (the Berlin and Vienna
Philharmonics, respectively). Because the piece is more
than seven minutes long, much fine detail is not observable.
Each pixel represents nearly a second of music, thus the
famous opening theme occurs in the in only the first few
pixels. The primary visible structure is the alternation of
softer string passages with louder tutti (all instruments
playing) sections, for example the sustained climax near the
end of the movement. This figure illustrates how the
visualization captures both the essential structure of the
piece as well as variations due to individual performances.
Though similarity matrices are not directly comparable, the
variation between louder and softer passages has been used
as a method for similarity retrieval [14]. 
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Figure 4.  First bars of Bach’s Prelude No. 1 in C Major, BVW 846, from The Well-Tempered Clavier

Figure 3.  Self-similarity of Prelude No. 1: computed 
from MIDI note events



2.3  Visualizing Musical Rhythm

Both the periodicity and relative strength of rhythmic
structure can be derived from the similarity matrix. We’ve
coined the term beat spectrum for a measure of self-
similarity as a function of the lag [13]. Peaks in the beat
spectrum at a particular lag l correspond to audio repetitions
at that temporal rate. The beat spectrum B(l) can be
computed from the similarity matrix using diagonal sums or
autocorrelation methods. A simple estimate of the beat
spectrum can be found by diagonally summing the
similarity matrix S as follows:

Here, B(0) is simply the sum along the main diagonal
over some continuous range R, B(1) is the sum along the
first superdiagonal, and so on. Figure 6 shows an example
computed for a three-second excerpt of the Gould
performance. The periodicity of each note can be clearly
seen, as well as the strong eight-note periodicity of the
phrase (with a sub-harmonic at 16 notes). Especially

interesting are the peaks at three and five notes. These
comes from the three-note periodicity of the eight-note
phrase: in each phrase, notes three and six, notes four and
seven, and notes five and eight are identical.

A more robust estimate of the beat spectrum is the
autocorrelation of S: 

Because B(k,l) will be symmetrical, it is only necessary
to sum over one variable to yield a one-dimensional result
B(l). This approach works surprisingly well for most kinds
of musical genres, tempos, and rhythmic structures. Figure 7
shows the beat spectrum computed from the first ten
seconds of the Paul Desmond jazz composition Take 5,
performed by the Dave Brubeck Quartet. Besides being in
the uncommon  time signature, this rhythmically
sophisticated work requires some interpretation. First, note
that there is no obvious periodicity at the actual beat tempo
(denoted by solid vertical lines in the figure). Rather, there
is a marked periodicity at five beats, and a corresponding
sub-harmonic at ten. Jazz aficionados know that “swing” is
the subdivision of beats into non-equal periods rather than
“straight” (equal) eighth-notes. The beat spectrum clearly
shows that each beat is subdivided into near-perfect triplets.
This is indicated with dotted lines spaced one-third of a beat
apart between the second and third beats. A clearer
visualization of “swing” would be difficult to achieve by
any other means. 

The beat spectrum can be analyzed to determine tempo
and more subtle rhythmic characteristics. Peaks in the beat
spectrum give the fundamental rhythmic periodicity [13].
Strong off-beats and syncopations can be then deduced from
secondary peaks in the beat spectrum. Because the only
necessary signal attribute is repetition, this approach is more
robust than other approaches that look for absolute acoustic
features such as energy peaks.
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Figure 5.  Self-similarity of Symphony No. 5. Top: von Karajan 
performance. Bottom: Carlos Kleiber performance. 
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Figure 6.  Beat spectrum of Gould performance from 
diagonal sum
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There is an inverse relationship between the time
accuracy and the beat spectral precision. Technically, the
beat spectrum is a frequency operator, and hence does not
commute with a time operator. Thus beat spectral analysis,
just like frequency analysis, is a trade-off between spectral
and temporal resolution.

3. The Beat Spectrogram
We also introduce the beat spectrogram for analyzing

rhythmic variation over time. Like its namesake, the beat
spectrogram visualizes the beat spectrum over successive
windows to show rhythmic variation over time. Time is on
the x axis, with lag time on the y axis. Each pixel is colored
with the scaled value of the beat spectrum at that time and
lag, so that peaks are visible as brighter horizontal bars at
the repetition time. Figure 8 shows the beat spectrogram of
a 33-second excerpt of the Pink Floyd song Money.
Listeners familiar with this classic-rock chestnut may know
the song is primarily in the 7/4 time signature, save for the
bridge (middle section), which is in 4/4. The excerpt shown
starts 4 minutes and 55 seconds into the song, and clearly
shows the transition from the 4/4 bridge back into the last 7/
4 verse. On the left, there are strong beat spectral peaks on
each beat (annotated white numbers), particularly at two and
four beats (the length of a 4/4 bar), and an eight-beat
subharmonic. Two beats occur in slightly less than a second,
corresponding to a tempo slightly faster than 120 beats per
minute (120 MM). This is followed by a short two-bar
transition. Then the time signature changes to 7/4, clearly
visible as a strong seven-beat peak with the absence of a
four-beat component. The tempo also slows slightly, visible
as a slight lengthening of the time between peaks.

4. CONCLUSION
We have presented a method of visualizing musical

structure and rhythm. Unlike many other approaches, this
method does not rely on detecting specific attributes like
pitch or energy; rather the signal is used to model itself. 

5. REFERENCES
[1] Potter R., G. Kopp, and H. Green, Visible Speech, D. Van 

Nostrand Co., NY, 1947
[2] Koenig, W., H.K. Dunn, and L.Y. Lacey, “The Sound Spec-

trograph,” in J. Acoustical Society of America, 18, p. 19-49.
[3] Moritz, W., “Mary Ellen Bute: Seeing Sound,” in Animation 

World, Vol. 1, No. 2 May 1996 http://www.awn.com/mag/
issue1.2/articles1.2/moritz1.2.html

[4] .Smith, Sean M., and Williams, Glen, “A Visualization of 
Music,” in Proc. Visualization ’97, ACM, pp. 499-502, 1997

[5] Malinowski, S., “The Music Animation Machine,” http://
www.well.com/user/smalin/mam.html

[6] Slaney, M. (1998). “Auditory Toolbox,” Technical Report 
#1998-010, Interval Research Corporation, Palo Alto, CA

[7] Church, K. and Helfman, J., “Dotplot: A Program for explor-
ing Self-Similarity in Millions of Lines of Text and Code,” in 
J. American Statistical Association, 2(2), pp.153--174, 1993

[8] Cutler, R., and L. Davis. “Robust Periodic Motion and Motion 
Symmetry Detection,” in Proc. Conference on Computer 
Vision and Pattern Recognition (CVPR), June 2000. 

[9] Bernstein, M., et al., “Architectures for Volatile Hypertext,” 
in Proc. Hypertext 91, pp. 243-260, December 1991.

[10] Eckman, J.P., et al., “Recurrence Plots of Dynamical Sys-
tems,” in Europhys. Lett., 4(973), November 1987

[11] Scheirer, E., “Tempo and Beat Analysis of Acoustic Musical 
Signals,” in J. Acoust. Soc. Am. 103(1), Jan 1998, pp 588-601.

[12] Foote, J., “Automatic Audio Segmentation using a Measure 
of Audio Novelty,” in Proc. International Conference on mul-
timedia and Expo (ICME), IEEE, August, 2000.

[13] Foote, J., and Uchihashi, S., “The Beat Spectrum: A New 
Approach to Rhythm Analysis,” to appear in Proc. Interna-
tional Conference on Multimedia and Expo (ICME) IEEE, 
Tokyo, August 2001.

[14] Foote, J. “ARTHUR: Retrieving Orchestral Music by Long-
Term Structure.” In Proc. of the International Symposium on 
Music Information Retrieval, Plymouth, Massachusetts, Oct. 
2000.

  0   1   2   3   4
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

be
at

 s
pe

ct
ru

m
 (

T
ak

e 
5)

time (s)

1 2 3 4 5

swing

10

Figure 7.  Beat spectrum of jazz composition Take 5
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Figure 8.  Beat spectrogram of Pink Floyd’s Money (excerpt), 
showing transition from 4/4 to 7/4 time
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