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ABSTRACT
We present methods for automatically producing summary excerpts | stream N [, | |
or thumbnails of music. To find the most representative excerpt, we start i / i end
maximize the average segment similarity to the entire work. Af- e
ter window-based audio parameterization, a quantitative similarity start D,(' )
measure is calculated between every pair of windows, and the re-
sults are embedded in a 2-D similarity matrix. Summing the simi-
larity matrix over the support of a segment results in a measure of . y

how similar that segment is to the whole. This measure is maxi- !
mized to find the segment that best represents the entire work. We

discuss variations on the method, and present experimental results

for orchestral music, popular songs, and jazz. These results demon-

strate that the method finds significantly representative excerpts, us-

ing very few assumptions about the source audio.

similarity
matrix S

1. INTRODUCTION j

As digital audio collections grow in size and number, audio sum-
marization, or “thumbnailing” has become an increasingly active ) o o ] o
research area. Audio summaries are useful in applications such as Figure 1: Embedding pairwise similarity data in the similarity
e-commerce and information retrieval, because of the large file sizes Matrix.

and high bandwidth requirements of multimedia data. Quite often
it is not practical to audit an entire work, for example if a music

search engine returns many results each lasting several minutes.

representative excerpt that gives a good idea of the work is thus is
desirable. Similarly, e-commerce music sites often make short song
segments available to preview before purchase. In an audio retrieval
system, it may make sense to judge the similarity of representative
excerpts of a work rather than the work as a whole, especially if the

analysis is computationally expensive. There is no point analyzing

an entire symphony if a reasonable index can be derived from a
ten-second excerpt.

end

A Sense, to the piece as a whole. This approach does not rely on se-
mantic content that can’t be automatically extracted, and thus cannot
be considered optimal in that sense. For example, a summary of the
first movement of Beethoven’s Fifth Symphony without the famous
four-note theme would not be ideal by most standards. To rectify
this, the process can be weighted to reflect any available semantic in-
formation. Another possible desiderata for an audio summary is that
it contain all representative portions. For example, a popular song
containing verses, refrains and a bridge should arguably be summa-
rized by an example containing portions of all three segments. This
is generally not possible with a short, contiguous excerpt. In this
paper, our summaries will be continuous excerpts that are typically
much shorter than the source audio.

For these applications, the segment must be a good representation
of the longer work. However, existing segmentation and excerpting
algorithms do little to guarantee this. Indeed, some approaches can
be as crude as to present, for example, the first thirty seconds of
an audio track as representing the whole work. This can be highly 1.1 Related Work

unsatisfactory if, for instance, the bulk of a particular track bears there is a great deal of related work on summarization techniques
little resemblance to an idiosyncratic introduction. for text, audio, and video. Most summarization or excerpting tech-
] ) ) nigues start with an analysis of the structure or semantics of the
We present a method for automatically producing excerpts of lin- gorce material. The work on statistical text summarization uses
ear media (where “linear” implies a function of a one-dimensional  {erm frequency/inverse document frequency (tf/ idf) to select para-
variable). Examples include audio and video, which are functions  granhs[1], sentences [9], or key phrases that are both representative
of time, and text, which is a discrete function of file position. We ot the document and differentiate it from other documents. Au-
construct summaries u_sing self-s_imil_arity analysis,_which aIIO\_Ns_us dio summarization techniques typically use a segmentation phase
to study the structure in an audio file by measuring the pairwise fo|lowed by extraction of a representative excerpt from each seg-
similarity between audio instants. ment. A subset of these excerpts are combined to summarize the
) ) o audio [6]. The work on scene transition graphs is a typical ap-
Here we assume the optimal excerpt is most similar, in an average proach to abstracting vided|[8]. After video frames are clustered,
the keyframe closest to each cluster center is chosen to represent
that cluster. Other approaches attempt to summarize video using
various heuristics, often derived from an analysis of accompanying
closed captions [2]. In contrast, our summarization method is not
based on any prior segmentation or segment clustering. The result-
ing summaries are selected to maximize quantitative measures of
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Figure 2: Spectrogram data computed from artificial three- Figure 3: Similarity matrix for synthetic signal of Figure 2.
tone audio data.

This is the cosine of the angle between the vectors and has the
property that it yields a large similarity score even if the vectors
are small in magnitude. For most applications, this significantly
improves performance over the Euclidean distance measure by re-

2 SELE-SIMILARITY ANALYSIS moving dependence on signal energy.

In our analysis, the first step is to parameterize the audio. Thisis The dgistance measure is a function of two frames, hence instants in

typically done by windowing the audio waveform. Currently, we  ha source audio. We consider the similarity between all possible
convert the source audio to a 22.05 KHz mono format by resampling jnstants in a signal by embedding the distance measure in a two-

or decoding a compressed format like MP3 (MPEG Layer2Level3).  gimensional similarity matrix, as depicted in Fig{ile 1. The matrix

We then subdivide the audio into 2048 sample (92.87 ms) “frames” g ¢ontains the similarity computed between all frame combinations,
ata 10 Hz rate. Each frame is then windowed with a Hamming win- ¢ ,ch that the element at tHé row and;*" column is

dow, and parameterized using Mel-Frequency Cepstral Coefficient

(MFCC) analysis (e.g.[[7]). We have algo s_uccessfully er_nploye_d _ S(i,7) = de(vi, v5) . ()
standard spectrogram-based parameterizations. We achieve simi-

lar performance by reducing the dimension of uniformly-spaced 64 In general,S will have maximum values on the diagonal (because
bin spectrograms via singular value decomposition (SVD). We are every window will be maximally similar to itself); furthermoredf
currently using MFCCs as they provide a low dimensional data- is symmetric ther8 will be symmetric as well.

independent parameterization, which may be efficiently calculated

using freely available software. Many compression techniques such . .. T .

as MP3 contain similar spectral representations which could be used 2-2  Visualizing Similarity Matrices

directly, avoiding the expense of audio decoding and reparameter- \We visualizeS by assigning a brightness proportional to the similar-
izing. Regardless of the parameterization, the result is a compact ity measurel. (i, j) to each pixe(i, j). The resulting image reveals
vector of parameters for every frame. Fig@e 2 shows the spec- the structure of the source audio. Regions of hlgh self-similarity ap-
trogram for a synthetic three-tone test signal. This was generated Pear as bright squares along the main diagonal. Repeated sections
by concatenating 30 seconds of a 1 kHz sine wave, 40 seconds of Produce bright off-diagonal rectangles. If the work has a high degree
500 Hz, and 30 seconds of 2 kHz to result in a one-hundred second ©f repetition, this will be visible as diagonal stripes or rectangles,
signal. Because the 500 Hz portion is the longest, the ideal sum- Offset from the main diagonal by the repetition time. The similarity
mary should consist primarily of the 500 Hz signal as opposed to matrix for the synthetic three tone signal is shown in Fifire 3. Each

the similarity between candidate excerpts and the source audio as a
whole. Summaries of any desired length can be extracted, to support
browsing at varying levels of detail.

the shorter 1 KHz and 2 KHz segments. portion of the signal is visible as self-similar white squares on the
diagonal. For example the 500 Hz tone extends from 30 seconds to
2.1 Distance Matrix Embedding 70 seconds on both time axes.

Once the signal has been parameterized, it is then embedded in

a two-dimensional representatigrj [3, 4]. The key is a meagure 3. AUTOMATIC SUMMARIZATION
of lt hel (dlz)?lmlle}nty be.twegn p/:urs_ of lpa(;gmeter veclmrand_uj h To find the segment of a work that best represents the entire work,
(I:Ea ClL.jdate dr_om ran_"leshznd_]. ;lmple Istance meaSLfre Is the we wish to find the segment with maximum similarity to the whole.
uclidean distance in the-dimensional parameter space: In popular music, which commonly contains repeated elements such
. as verses or choruses, we expect that the song’s most-repeated or
de(vi,v)) = Z(”i(l) —v;(1))? . 1) Iopgest element ywl] appear in the summary. This element is deter-
=1 mined from the similarity matrix.

A simple example will illustrate the approach. Given the sequence
Another useful similarity measure is the scalar (dot) product of the  ABBBCCwe wish to find the most representative subsequence of
vectors. The dot product can be normalized to give the cosine of the length three. For simplicity, the similarity measure is chosen to
angle between the parameter vectors: be one if the sequence members match and zero otherwise. We
< v, v5 > can computeS using a Hamming-like metric such that the distance
de(vi, vj) = m ) @ between two sequence elements is one if the elements are the same,



Automatic Music Summarization via Similarity Analysis

start q r end
start
similarity
matrix S

end

Figure 4: Calculating S(g, ) by summing the similarity matrix
over the support of the excerptg, - - - ,r.
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Figure 5: Summary scoresQ, (i) computed from the similarity
matrix of Figure BJfor L = 20, 30, and 40 seconds.

and zero otherwise:
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The previous example can be generalized to arbitrary sequence
lengths. Given a segment startingg@tnd ending at, the av-
erage similarity of the segment is calculated as the sum of the self-
similarity between the segment and the entire work, normalized by
the segment length:

S(gr) = ——

T N
Z Z S(m,n),

m=qn=1

N(r—q) ©)
where N is the length of the entire work (width and height ®X.
This is shown schematically in Figuré 4. A simple interpretation
of S(q, r) is the average of similarity matrix rows over the interval
q,- - ,r (or equivalently, the columns). Thus intervals with large
similarity to the work as a whole will have a larger aver&qe, r).

If a weighting functionw is known, it can be applied to find a
weighted average as:

Suw(g,r) = ﬁ > w(n)S(m,n). (6)

m=qn=1

This can be maximized to find the optimal weighted summary. Typ-
ical weighting functions might includea that decreases with time,

S0 segments at the beginning of the work are weighted more highly
than those at the end. Alternatively,might include a measure of
loudness, favoring generally louder sections sudiutis(all instru-
ments playing) or choruses rather than verses. Any otherinformation
knowna priori or deduced can be incorporated into

To find the optimal summary of length, we find the excerpt of
that length with the maximum summary score (€g. (5)). Define the
scoreQy (i) as

i+L N

QL) =SG,i+ L) = ﬁ 35 S(m,n)

m=in=1

Q)
fori =1,--- , N — L. The best starting point for the excerpt is the
time ¢7, that maximizes the summary score:

q1, = ArgMax Qr(4).
1<i<N-L

8)

The best summary is then the excerpt of lenftbtarting aty7, and
ending at timey; + L.

Figure[$ shows values . (i) versus start time, for summary
lengthsL of 20, 30, and 40 seconds. All show a maxima or peak at

q" = 30, which is the start time of the 500 Hz tone (the most repre-
sentative segment of the work). Tlhe= 20 curve has a maximum

that extends from 30 seconds to 50 seconds, because any 20 second
excerpt starting within that interval will consist solely of the 500

Hz representative tone. Thus for this example and segment lengths,
picking any maximal poing7, results in an excerpted segment that
consists completely of the 500 Hz tone. This is the desired behav-
ior in a quasi-probabilistic sense: any infinitesimally short sample

For any subsequence, the average similarity between the subse-5yen yniformly randomly from the the source signal will result in
quence and the entire sequence can be found by summing the 5 500 Hz tone 40% of the time, and 1 or 2 kHz only 30%. Thus

columns (or equivalently, rows) @ corresponding to that sub-
sequence. In our example, we want to find the three-element sub-
sequence with maximal average similarity. There are four possi-
ble subsequencesABB BBB BBG and BCCwith column sums
seven, nine, eight, and seven, respectively. The highest scoring
subsequence iBBB with a score of nine. This is the optimal
three-element contiguous summary of the sequé&iBBCCNote

that this contains all the most frequent memb&xdf the longer
sequence. The runner-up sequencBBCwith a score of eight,
which contains both the most frequent and second-most frequent

the selected segment contains the excerpt most likely to be similar
to samples from the original signal.

4. EXPERIMENTS

4.1 Music Visualization

Figure[6 shows a visualization for the Spring (allegro) movement
from Vivaldi’'s The Four SeasonsThe 22.05 KHz audio was win-
dowed at a 10 Hz rate. For each window, we computed 45 MFCCs.
We then ordered the MFCCs according to their variances across

members. The score can be normalized by the subsequence lengththe entire piece, and retained the fifteen coefficients with highest

so that summaries of different lengths can be compared.

variances. We scaled these coefficients to unit variance (hence zero
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Similarity Matrix for Rite of Spring
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Figure 6: Similarity matrix computed for Vivaldi's Spring us-
ing MFCC features and cosine similarity measure. The opening
theme is repeated at 72 and 190 seconds.

mean) across the piece, and then calculated the pairwise similarity
using the cosine distance ¢1 (2). (We discarded the low variance co-
efficients as they provide poor discrimination between the structural
elements of a piece. Scaling them to unit variance will generally
amplify noise and in turn degrade the similarity analysis.)

The resulting similarity matrix shows the familiar opening theme in
the first sixteen seconds. Itis repeated twice, fite (loudly) then

a quieter repeat eight seconds later. Both repetitions look similar
because of the cosine similarity measure. The theme is repeated at
seventy-two seconds and one hundred ninety seconds, which can be
seen as brighter regions along the bottom of the image. The major
structure of the piece is also evident in the blocks along the main
diagonal. For example the bright block between 30 and 70 seconds
is a soft passage for two violins, with the rest of the ensemble quiet.

Figure[T shows the similarity matrix computed frafhe Magical
Mystery Touiby The Beatles, using the same parameterization as the
Vivaldi. The bright white squares of high similarity show repeated
instances of the song’s familiar chorus (“Roll up, roll up for the
Mystery Tour”) throughout the song. The piece also features a
distinctive coda from 145 - 167 seconds, which differs substantially
from the majority of the song.

4.2 Music Summarization

We use the similarity matrix to determine the optimal summaries in
two steps. The first step is to evaluate the summary sQoré)

of (7). Next, we maximize this to find the best start pajiit of

(8). Computing the column sums of &f in advance can reduce
computation and storage requirements. For example, in an ap-
plication where variable length summaries of songs are provided
depending on available bandwidth, the column sums for each song
can be pre-computed and stored, &dan be discarded. Given a
desired summary lengtt,, Qr, can be computed using solely the
column sums (the inner sum ¢f|(5)), and maximized to determine
the summary excerpt. The column sums computed from the matrix
of Figure[ T appear in Figufg 8.

Figure@ shows the summary scom®@so (i), Q20(¢), and Q3o ()
computed by summing the columns of the similarity matrix for for
The Magical Mystery TouiFigurg8). Locating the maxima in these

Similarity Matrix for The Magical Mystery Tour

Time (sec)
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Figure 7: Similarity matrix computed for The Magical Mystery
Tourusing MFCC features and cosine similarity measure.

Similarity Matrix Column Sums for The Magical Mystery Tour
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Figure 8: Column sums computed from the similarity matrix of
Figure[7]

curves, per[(8), produces the optimal summary start points shown
in Table[1. The twenty second summary includes the ten second
summary and contains the familiar title refrain. The thirty second
summary, interestingly, is a repeat of this element of the song, but
from later in the piece (after the bridge). This excerpt was selected
becauseitis alonger reprisal of the same title refrain than is available
at the beginning of the song.

Tablg 2 shows the optimal summaries computed for Vivaiiisng
Allthree summaries include the memorable introductory theme. The
ten second summary is the first 10 seconds of the theme. The 20-
second summary includes the last three repetitions. The 30-second
summary includes virtually the entire introduction, which exhibits
the highest average similarity with the overall piece.

We also present summaries for two additional songs. Table 3 shows
three summaries computed favild Honeyby the band U2. All
three summaries include the song’s longest chorus segments. The
chorus is about 15 seconds long, so the first summary only contains
a portion of it, while the longer two summaries contain at least one
of its repetitions in its entirety. Tab[g 4 shows three summaries
computed fofTake the “A” Train performed by Duke Ellington and

his orchestra. Again, all three summaries contain the same portion
of the piece; in this case it is a reprisal of the song’s main melody
at the performance’s end. In each of the four cases presented, the
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resulting summaries make intuitive sense, and represent significant
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Table 3: Summary times for Wild Honey.

* Segment Length| Start (sec.)| End (sec.)
10 197.1 207.1
20 189.6 209.6
30 181.7 211.7

Table 4: Summary times for Take the “A” Train.

Segment Length| Start (sec.)| End (sec.)
10 135.2 145.2
20 136.7 156.7
30 135 165

meaningful segment boundaries (such as verse/chorus transitions).
We are also examining joint segmentation and summarization tech-

niques to develop a more complete structural characterization of

digital audio.

and memorable elements of the original pieces. These results are 6. ACKNOWLEDGMENT
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