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ABSTRACT

We present similarity-based methods to cluster digital pho-
tos by time and image content. This approach is general,
unsupervised, and makes minimal assumptions regarding
the structure or statistics of the photo collection. We de-
scribe versions of the algorithm using temporal similarity
with and without content-based similarity, and compare the
algorithms with existing techniques, measured against
ground-truth clusters created by humans.

1. INTRODUCTION

Digital cameras are coming into widespread use, and allow
users to amass increasingly larger collections of digital pho-
tographs. There is thus a demand for automatic tools to help
users manage, organize, and browse these collections. Un-
like film, digital photographs typically include meta-data,
such as the time and date, in a standard image header such
as Exif (EXchangeable Image File [1]). In a recent report,
Stanford researchers have found that organizing photos by
time significantly improves users’ performance in a series
of retrieval tasks [2]. Furthermore, consumers often wish to
organize their photos in terms of “events” both for browsing
and retrieval, as well as for sharing selected subsets of pho-
tos with others. Events are difficult to define quantitatively
or consistently, but most commonly, photographs from the
same event were taken in relatively close proximity in time.
Events tend to exhibit little coherence in terms of low-level
image features, and it is not uncommon for visually dis-
similar photos to belong to the same event. For example,
pictures from a trip to the beach could include photos of
widely different subjects (beach, ocean, vehicle) taken at at
different times of day.

To start, we examine clustering the photos by timestamp
alone. We adapt a similarity-based media segmentation al-
gorithm [3, 4] to hierarchically cluster photographs with
similar (i.e. proximal) timestamps. This approach makes no
assumptions about the distribution of the timestamps. We
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Fig. 1. Panel (a) shows a temporal similarity matrix for
256 photographs. Panel (b) shows the corresponding image
similarity matrix, computed from DCT coefficients. Darker
hues indicate increasing similarity.

then extend the algorithm to consider content-based features
in addition to temporal data. This approach can be extended
to include any other types of meta-data or image features
which may prove useful. We also note that this clustering
technique can be applied to any time-ordered data given a
measure of similarity.

2. RELATED WORK

Automatic digital photo organization has received increased
attention in recent years. The algorithms in [2, 5] oper-
ate using an adaptive local threshold applied to the inter-
photo time interval. Researchers at Kodak have developed
an event segmentation algorithm based on clustering time
differences using a two class version ofK-means [6]. All
time differences in the cluster with the greater mean are la-
belled as event boundaries. Our approach is similar in spirit
to the scale-space media segmentation approach of [7] but is
coarse-to-fine and doesn’t require segment boundaries to be
“traced back” from smaller scales to larger scales. Our ap-
proach is multi-resolution, and uses a similarity-based con-



fidence measure to assess clustering performance at the dif-
ferent resolutions. Clustering the photos at varying time
resolutions can also enable flexible user interfaces, allow-
ing users to organize their photo collections at different time
scales.

3. ALGORITHMIC DETAILS

3.1. Pre-processing

For each photo, the Exif headers are processed to extract the
timestamp (if Exif information is not available, we rely on
the modification time of the digital image file, which will
not generally be reliable for photo clustering). TheN pho-
tos in the collection are then ordered in time so the result-
ing timestamps,{ti : i = 1, · · · , N}, satisfyt1 ≤ t2 ≤
· · · ≤ tN . (N.B. Throughout, we index sequences and ma-
trices by photo index in time order, not by absolute time.)
For content analysis, we transform each photo to the Ohta
colorspace [8] and compute the discrete cosine transform
(DCT) of each channel. For each photo, we concatenate the
25 low frequency DCT coefficients from each channel to
form a set of time-ordered feature vectors:{v1, · · · , vN}.
Any features which consistently quantify similarity can be
substituted or integrated into the analysis. The sole require-
ment is that similar images produce similar features.

3.2. Distance matrix embedding

We use a multi-scale approach to determine the temporal
structure in the photo collection. Using the timestamps, we
constructN ×N similarity matrices according to

S
(K)
T (i, j) = exp

(
−|ti − tj |

K

)
. (1)

To measure the image similarity between photos, we use a
similarity measure based on exponential the cosine distance
between the photos’ DCT features:

SC(i, j) = exp

(
< vi, vj >

‖vi‖‖vj‖
− 1

)
. (2)

Fig. 1 shows example similarity matrices computed from
256 digital photographs taken over five months’ time. Panel
(a) shows the temporal similarity matrix of Eq. (1) forK =
10000 minutes, while panel (b) shows the image similar-
ity matrix computed from Eq. (2). The time-ordered index
runs along the rows (top to bottom) and columns (left to
right) of the matrices. Dark blocks of high similarity along
the main diagonal indicate clusters of sequentially similar
photographs. Corners between the dark squares along the
main diagonal indicate boundaries between two groups of
photos.

The parameterK in Eq. (1) controls the sensitivity of
the exponential similarity measure. By varyingK, we as-
sess temporal similarity over different time extents. For

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Photo Index

P
ho

to
 In

de
x

Combined Similarity Matrix: K = 100

50 100 150 200 250

50

100

150

200

250

(a)

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Photo Index

N
or

m
al

iz
ed

 N
ov

el
ty

 S
co

re

K = 100

Ground Truth
Novelty

(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Photo Index

P
ho

to
 In

de
x

Combined Similarity Matrix: K = 1000

50 100 150 200 250

50

100

150

200

250

(c)

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Photo Index

K = 1000

N
or

m
al

iz
ed

 N
ov

el
ty

 S
co

re

Ground Truth
Novelty

(d)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Photo Index

P
ho

to
 In

de
x

Combined Similarity Matrix: K = 10000

50 100 150 200 250

50

100

150

200

250

(e)
0 50 100 150 200 250 300

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
K = 10000

Ground Truth
Novelty

(f)

Fig. 2. The left column shows the similarity matricesS(K)
J

for K = 100 (a),K = 1000 (c), andK = 10000 (e). Panels
(b), (d), and (f) show the corresponding novelty scores com-
puted using a gaussian checkerboard kernel (solid), with the
ground truth novelty score (dashed).

joint temporal and content-based clustering, we form a sec-
ond family of similarity matrices indexed byK:

S
(K)
J (i, j) =

{
S

(K)
T (i, j) if |ti − tj | > 48 hours

max(SC(i, j),S
(K)
T (i, j)) otherwise.

(3)

By construction, this matrix emphasizes temporal similar-
ity, which we generally find to be most reliable for organi-
zation. However, image similarity can dominate for photos
with sufficient temporal proximity. The left column of Fig.
2 shows three similarity matrices computed using Eq. (3)
for different values ofK. As expected, coarser clusterings
of the photos are visualized in the matrices for larger values
of K. As K decreases, finer dissimilarities between groups



of timestamps become apparent, and the content-based sim-
ilarity is more prominent.

3.3. Photo clustering

In Fig. 1, clusters are visible to the eye as dark blocks on
the main diagonal. To cluster the collection into groups of
similar photos, we travel along the diagonal and calculate a
measure of how much a particular region looks like a bound-
ary, that is like a2× 2 checkerboard [3]. This is done using
a matched filter approach: we correlate a Gaussian-tapered
11× 11 checkerboard kernel, denotedg, along the main di-
agonal of eachS(K)

J to calculate the “novelty score”

νK(i) =

5∑
l,m=−5

S
(K)
J (i + l, i + m)g(l, m) . (4)

(For clustering, we need only compute the portion of the
similarity matrix around the main diagonal with the same
width as the kernel, reducing computational complexity to
orderN .)

The right column of Fig. 2 shows the novelty scores
computed forK = 102, 103, 104 minutes. While the matri-
ces reveal structure at different resolutions, the peaks in the
corresponding novelty scores (solid plots) comprise a set
of cluster boundaries between contiguous groups of simi-
lar photos. In the plots of the right column, the ground
truth novelty score is the superimposed dashed plot. The
ground truth score is computed from a binary similarity ma-
trix whose(i, j)th element is one if photosi and j were
placed in the same event folder by the photographer and
zero otherwise.

For clustering, we locate peaks in the novelty score at
each scale (K), performing the analysis from coarse scale
to fine (decreasingK). To build a hierarchical set of event
boundaries, we include boundaries detected at coarse scales
in the boundary lists for all finer scales. At each scale we
detect peaks by finding zeros in the first difference of the
novelty score. We threshold detected peaks as a function of
the maximum novelty for a data-independent approach.

3.4. Selecting a “best” scale

This procedure results in a list of cluster boundaries and
strengths at multiple resolutions. Ultimately, we wish to
present users with the boundaries from a the single, best,
resolution level. To determine the “goodness” of the bound-
aries at a given time scale, we calculate a confidence mea-
sure from the average within-class similarity and the
between-class dissimilarity of the data. Denote the detected
boundaries at each level,B(K) = {b1, · · · , bnK

}, indexed
by photo:B(K) ⊂ {1, · · · , N}. For convenience, assume
thatb1 = 1 andbnK

= N . We then compute the confidence
score

SSSS
bl

bl+1

bl+2

bl bl+1 bl+2

Fig. 3. Computing a confidence score for clustering. The
dark regions represent within-cluster similarity, while the
gray regions represent between-cluster similarity.

C(B(K)) =

|BK |−1∑
l=1

bl+1∑
i,j=bl

S
(K)
J (i, j)

(bl+1 − bl)2

−
|BK |−2∑

l=1

bl+1∑
i=bl

bl+2∑
j=bl+1

S
(K)
J (i, j)

(bl+1 − bl)(bl+2 − bl+1)
.(5)

The first term above quantifies the average within-class sim-
ilarity between the photos within each cluster. The sec-
ond term quantifies the average between-class similarity be-
tween photos in adjacent clusters. By negating this term, the
confidence measure thus combines each cluster’s average
self-similarity and the dissimilarity between adjacent clus-
ters. Fig. 3 illustrates the idea graphically. The within-class
similarity terms are the means of the terms of darker regions
along the main diagonal. The between-class terms are the
means of the off-diagonal gray regions. Algorithm 1 details
the computational steps. We have also experimented with
a purely time-based approach in whichS(K)

J is replaced by

S(K)
T in the algorithm.

Algorithm 1 [Hierarchical Photo Clustering]

1. Extract and sort photo timestamps,{t1, · · · , tn}, and com-
pute DCT features{v1, · · · , vN}.

2. For eachK in decreasing order

(a) Compute the similarity matrixS(K)
J using Eq.(3).

(b) Compute the novelty scoreνK of Eq. (4).

(c) Detect peaks in the novelty score.

(d) Form event boundary list using event boundaries from
previous iterations and newly detected peaks.

3. Compute confidence score using list of event boundaries,
B(K) for eachK following Eq.(5).

4. Select event boundary list forK maximizing the confidence
score.



Table 1. The table summarizes our experimental results.
Collection I

Alg. Precision Recall F-score
[6] 0.39 1.0 0.56
[2] 0.38 1.0 0.55

Thresh. 0.72 0.95 0.82
Time 0.79 0.88 0.83
Joint 0.9 0.79 0.84

Collection II
Alg. Precision Recall F-score
[6] 0.42 1.0 0.6
[2] 0.29 1.0 0.45

Thresh. 1.0 0.85 0.92
Time 0.77 0.94 0.85
Joint 0.84 0.89 0.86

4. EXPERIMENTAL RESULTS

For evaluation, we applied five algorithms to two separate
photo collections. Collection I consists of 1036 photos taken
over 15 months, and Collection II consists of 413 photos
taken over 13 months; all photos had accurate timestamps.
Photos were assigned to meaningful events by the respec-
tive photographers. Photos in each event were sequential,
and event classifications were used as ground truth for our
clustering experiments. We compare our algorithms to two
other approaches described in the literature [2, 5] and to a
simple (constant) threshold. [2] and [5] compare the time
difference between successive photographs to a variable
threshold based on the logarithm of the average inter-photo
time difference over a local window. Event boundaries oc-
cur where the time difference between photos exceeds the
threshold. To determine if this worked better than simple
thresholding, we skipped the thresholding step and looked
at the first level of the hierarchy it created. For each algo-
rithm, the precision, recall [9], and F-score1 for the detected
event boundaries are presented in Table 1. The “Thresh.”,
“Time”, and “Joint” algorithms refer to the simple thresh-
old, purely temporal, and joint time-content versions of Al-
gorithm 1, respectively. Note also that the threshold is man-
ually selected to maximize the F-score for [2], [5], and the
simple thresholding, while the similarity-based approaches
are fully automatic.

At most time intervals, the self-similarity algorithms
slightly outperform the simple threshold, with the added ad-
vantage of not requiring ana priori threshold. It also sup-
plies a hierarchy of event boundaries. The joint and tem-
poral similarity algorithms exhibit almost identical perfor-
mance, suggesting that temporal analysis alone may be suf-
ficient.

1The F-score is computed for given precisionp and recallr as
F-score= (2× p× r)/(p + r).

5. SUMMARY

Our approach has significant advantages over existing tech-
niques. Besides integrating temporal and image content in-
formation, our approach does not rely on a preset thresh-
old and should generalize better to different image collec-
tions. While existing approaches typically only consider the
similarity between adjacent photos (such as comparing their
time difference to a threshold), our novelty measure is based
on similarity comparisons betweenall possiblephoto pairs
in a local neighborhood. Ultimately, this more comprehen-
sive analysis will provide more robust clustering.
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