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ABSTRACT
We present similarity-based methods to cluster digital pho-
tos by time and image content. The approach is general, un-
supervised, and makes minimal assumptions regarding the
structure or statistics of the photo collection. We present
results for the algorithm based solely on temporal similar-
ity, and jointly on temporal and content-based similarity.
We also describe a supervised algorithm based on learn-
ing vector quantization. Finally, we include experimental
results for the proposed algorithms and several competing
approaches on two test collections.

Categories and Subject Descriptors
H.5 [Information Interfaces and Presentation]: Mul-
timedia Information Systems; H.3 [Information Storage
and Retrieval]: Content Analysis and Indexing—Indexing
methods

General Terms
algorithms, management

Keywords
digital photo organization, temporal media indexing and
segmentation

1. INTRODUCTION
Digital cameras are coming into widespread use, and as

a result, users are amassing increasingly large collections of
digital photographs. There is thus a demand for automatic
tools to help manage, organize, and browse these collections.
A recent study focused on requirements for these tools [1].
The authors emphasized the importance of intuitive photo
management software capable of supporting a variety of us-
age scenarios. Fortunately, digital photographs typically in-
clude metadata, such as the time and date, in a standard
image header such as Exif (EXchangeable Image File [2])
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Figure 1: Panel (a) shows a temporal similarity ma-
trix computed for 256 digital photos. Panel (b)
shows the content-based similarity matrix calculated
from low frequency DCT features and the cosine
similarity measure.

that can be used for automatic organization. In the future,
many consumer digital cameras will also record global po-
sitioning system (GPS) location information which should
also prove valuable for this task.

Consumers often organize their photos in terms of “events”
both for browsing and retrieval, as well as for sharing se-
lected photos with others. Events are naturally associated
with specific times and places, such as a child’s birthday
party or a vacation. However, events are difficult to define
quantitatively or consistently. The photos associated with
an event often exhibit little coherence in terms of both low-
level image features and visual similarity. As an example
of an event, consider the possible pictures taken during a
trip to the beach. The photos could have widely different
subjects such as the beach, the ocean, vehicles, or people.



Photos of the same scene will also exhibit considerable vari-
ability if taken at different times of day. Generally, pho-
tographs from the same event are taken in relatively close
proximity in time. Stanford researchers recently reported
that organizing photos by time significantly improves users’
performance in a series of retrieval tasks [3].

To examine inter-photo similarity, we compute similarity
matrices for 256 photos using both temporal and content
based features in Figure 1. The 256 photos belong to 11
contiguous event clusters (as grouped by the photographer).
The matrices are computed by comparing the features from
all possible pairs of photos. The resulting similarity data
is embedded in the similarity matrix as depicted in Figure
2. Specifically, the (i, j) element of the matrix quantifies
the similarity between the ith and jth photos. Throughout,
photos are ordered according to their timestamps. Figure
1(a) shows the temporal similarity matrix computed as

S(i, j) = exp

(
−|ti − tj |

10000

)
where ti and tj are the timestamps in minutes of photos i
and j, respectively. The blocks of high similarity along the
main diagonal of the matrix indicate groups of photos with
similar timestamps. A checkerboard pattern along the main
diagonal indicates the boundary between two such groups.
The crux of the checkerboard pattern is the boundary in
time order between the photos in the two events. The ma-
trix provides a reasonably clear visualization of the tempo-
ral structure of the photos. Large blocks of high similarity
appear along the main diagonal of the similarity matrix.
Figure 1(b) shows the corresponding content-based similar-
ity matrix. The matrix is computed by comparing low fre-
quency discrete cosine transform (DCT) coefficients from
each photo using the cosine distance measure:

SC(i, j) =
< vi,vj >

‖vi‖‖vj‖
. (1)

vi denotes the DCT features of the ith photo in time order.
Far less structure is evident in SC , compared to the temporal
similarity matrix of panel (a). In our experience, content-
based image similarity is less useful for photo clustering and
event detection than metadata.

We focus here on analyzing the photos’ timestamps,
though our goal is a general framework in which metadata
and content-based information are integrated for automatic
photo organization. We formulate event detection as the
partitioning of the time interval of the photos’ timestamps
into contiguous subintervals corresponding to the underlying
events. For partition boundaries, we only consider the times
at which photos were taken; each photo is a candidate event
boundary.

Our approach is based on studying the similarity between
the photos’ timestamps. The first step is to extract and sort
the timestamps in a photo collection. We quantify temporal
similarity by pairwise comparisons of timestamps in local
neighborhoods moving through the collection. We have
adapted a media segmentation algorithm [4] to calculate
a photo-indexed novelty score. As detailed in Section 3,
the novelty score measures the intra-class similarity and
inter-class dissimilarity between adjacent groups of photos.
Specifically, the novelty score quantifies the similarity of the
groups of photos taken both before and after a candidate
boundary in time order. We assume that the photos at event
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Figure 2: Embedding photo similarity data in a ma-
trix.

boundaries separate two adjacent groups of photos with high
intra-class temporal similarity and low inter-class similar-
ity. Because the duration of an event can be anywhere from
hours to weeks, we examine similarity at multiple scales us-
ing an indexed family of temporal similarity measures. Thus
each photo is associated with a novelty score at each scale.
Using these multi-scale features, we present a supervised al-
gorithm for event detection. We also train a learning vector
quantizer (LVQ) to classify each photo’s features as either
an event “boundary” or “interior”.

Next, we detail an unsupervised algorithm using the multi-
scale features. Peaks in the novelty scores are detected at
each scale. A hierarchical set of event boundaries is con-
structed by processing the boundary lists from coarse scale
to fine. The photo clusterings at each scale are then quan-
titatively compared to select a “best” scale, and the corre-
sponding boundary list provides the final event clustering.
Additionally, we present a version of this algorithm which in-
tegrates content-based and temporal similarity using a sim-
ple heuristic.

We reported preliminary results for unsupervised event
detection in [5]. The algorithm has now been implemented
in an application for organizing digital photos [6]. In this pa-
per, we introduce approaches based on scale-space analysis
and learning vector quantization and expand the experimen-
tal evaluation. Our unsupervised similarity-based approach
is fully automatic and its performance approximates that of
hand-tuned semi-automatic techniques (i.e. algorithms with
thresholds that are manually set to maximize performance).

The analytic framework presented below is very general.
It can integrate content-based features and relevant meta-
data, and the multi-scale novelty features and analysis can
be applied to text, audio, and video stream segmentation.
Also, the formulation based solely on temporal similarity
can be used to analyze any timestamped data collection.

The paper is organized as follows. Section 2 reviews re-
lated work. Section 3 describes the calculation of the photo-
indexed novelty scores used as features for event detection.
Sections 4 and 5 detail the supervised and unsupervised al-
gorithms for event detection. In Section 6, we present ex-



perimental results comparing the proposed approaches and
competing methods on two test collections of digital photos
classified into meaningful events by the photographer. The
paper concludes with a summary discussion.
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Figure 3: Panel (a) shows the ground truth sim-
ilarity matrix. Panel (b) shows the novelty score
computed using a gaussian checkerboard kernel.

2. RELATED WORK
Automatic digital photo organization has received

increased attention in recent years. The algorithms in [3,
7] group photos using an adaptive local threshold applied to
the inter-photo time interval. Researchers at Kodak segment
events by clustering time differences using the two class K-
means algorithm and content-based post-processing [8]. All
time differences in the cluster with the greater mean are la-
belled as event boundaries. The STELLA system includes
a semi-automatic algorithm for content-based event cluster-
ing using image sequence (within a roll of film) information
rather than timestamps [9]. In [10], semantically-motivated
content-based features were developed for image indexing
and retrieval without the use of metadata.

Our work is closer in spirit to scale-space analysis [11, 12]
and its application to the segmentation of text and video
streams in [13]. In scale-space analysis, difference features
are extracted from a data set and examined after smoothing
with Gaussian kernels of varying standard deviation. The
multiple smoothing filters reveal boundaries at the varying
scales. The boundaries are detected and traced back from
fine to coarse scale. Final segment boundaries are selected
according to the strength and extent of the peaks over the
scales. This information can be used to construct a final flat
or hierarchical segmentation.

In this paper, we focus primarily on temporal organization

of photo collections at multiple scales. We present a gen-
eral framework in which provably useful semantic or other
content-based features may be integrated in future work.
Our approach, detailed below, is fully automatic and re-
quires no thresholds or training. Unlike [3, 7], temporal
similarity is assessed at multiple scales, and the similarity
measure is calculated between all pairs of points in local
neighborhoods (including photos that are not adjacent in
time order). At each scale, we compute a correlation-based
score to determine locally novel data points between two ad-
jacent groups of homogenous features that exhibit low inter-
group similarity. To select a final set of event boundaries,
we use a confidence measure that determines a “best” scale
for the event segmentation over the entire collection of pho-
tos. Unlike [13], the scale varies in the similarity measure,
used to quantify inter-photo temporal similarity. We use the
same kernel at every scale to compute the novelty features of
Section 3.2. Finally, our algorithm does not require segment
boundaries to be “traced back” from smaller scales to larger
scales. Rather, we use the confidence measure of Section 5.2
to compare clustering performance at the different scales.
Clustering at multiple resolutions also enables flexible user
interfaces that allow users to organize their photo collections
at different time scales.

3. FEATURE EXTRACTION
For each photo, the Exif headers are processed to extract

the timestamp (if Exif information is not available, we rely
on the modification time of the digital image file). The
N photos in the collection are then ordered in time so the
resulting timestamps, {ti : i = 1, · · · , N}, satisfy t1 ≤ t2 ≤
· · · ≤ tN . Throughout, we index the timestamps and the
rows and columns of the similarity matrices by photo (in
time order), not by absolute time. This differs from the
analysis in [4], because the time difference between indices
(photos) is non-uniform. Thus, each photo is represented by
its scalar timestamp.

3.1 Distance matrix embedding
Our approach is founded on similarity analysis. As an

example, Figure 3(a) shows the similarity matrix generated
from the ground truth clustering of 500 photos from our test
set. Each photo in the test set was stored in an event folder
by the photographer. The elements of the matrix are one
for photos from the same folder and zero otherwise. The
photos are indexed in time order, and the (i, j) element of
the matrix compares the names of the folders in which ith

and jth photos were stored. This embedding is graphically
depicted in Figure 2. The blocks along the main diago-
nal of the matrix are the photos grouped in each folder.
A checkerboard pattern along the main diagonal indicates
the boundary between folders or events. The crux of the
checkerboard pattern is the boundary between the photos
in the two events.

This is a convenient visualization, which immediately
shows that the photographer-defined (ground truth) events
partition the photos contiguously in time. To see this, notice
that the matrix does not have rows (or columns) with zero
entries between one entries. Each row’s elements that equal
one (members of the same event) are always connected. We
assume that the events are contiguous and each photo be-
longs to a single event. Thus event detection reduces to
locating the event boundaries.
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Figure 4: The left column shows the similarity matrices SK for K = 1000 (a), K = 10000 (b), and K = 100000
(c) minutes. Panels (d), (e), and (f) show the corresponding novelty scores computed using a Gaussian
checkerboard kernel.

We use a multi-scale approach to assess the temporal
structure in the photo collection. We construct a family
of N ×N similarity matrices according to

SK(i, j) = exp

(
−|ti − tj |

K

)
. (2)

The parameter K controls the sensitivity of the exponen-
tial similarity measure. For calculation, the units of K and
the timestamps are minutes; the similarity measure is unit-
less. By varying K, we can visualize the similarity between
the timestamps at differing granularities. The top row of
Figure 4 shows similarity matrices computed using (2) for
K = 103, 104, 105 minutes. The matrices for larger values
of K exhibit coarser clusterings of the photos’ timestamps.
For smaller K, finer dissimilarities between groups of times-
tamps become apparent.

3.2 Computing the novelty scores
In Figure 3(a), the event clusters are visible as dark blocks

on the main diagonal. The boundaries between the event
clusters are the centers of checkerboard patterns along the
main diagonal. To identify the cluster boundaries between
groups of similar photos, we traverse the diagonal and calcu-
late a photo-indexed novelty score, following [4]. We seek the
centers of the checkerboards; each corresponds to the bound-
ary between two adjacent groups of photos each with high
temporal self-similarity. The off-diagonal squares of the
checkerboard indicate low temporal cross-similarity. The
novelty score quantifies local self-similarity and
cross-similarity using a matched filter approach. We cor-
relate a Gaussian-tapered checkerboard kernel, denoted g,
along the main diagonal of each SK to calculate the photo-

indexed novelty score

νK(i) =
∑̀

l,m=−`

SK(i + l, i + m)g(l, m) . (3)

An example kernel appears in Figure 5. Throughout, ` = 6,
so that the kernel is 12×12. The bottom row of Fig. 4 shows
the novelty scores computed for K = 103, 104, 105 minutes.
While the matrices reveal structure at different resolutions,
the peaks in the corresponding novelty scores comprise a set
of cluster boundaries between contiguous groups of similar
photos. The boundaries are identified by simple analysis of
each novelty score’s first difference.

Figures 3 and 4 show that the matrices are typically zero
far from the main diagonal, that is when |i − j| is large.
To reduce storage and computation requirements, we need
only compute the portion of the similarity matrix around the
main diagonal with the same width as the kernel, reducing
computational complexity to order N . We use the set of
novelty scores computed using matrices with varying values
for K as features for photo event clustering. Let K take
M values in the analysis: K ∈ K ≡ {K1, · · · , KM}. Then,
the total algorithmic complexity is order N · M . In the
following sections, we present supervised and unsupervised
algorithms for event clustering based on multi-scale analysis
of local temporal similarity.

4. SUPERVISED EVENT CLUSTERING
In this section, we describe a supervised algorithm for

event clustering based on a LVQ [14]. Here, we assume
that the novelty features can be used to distinguish photos
at event boundaries from the remainder of the collection.
Define the M × N matrix N (j, i) = νKj (i). We associate
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Figure 5: An example checkerboard kernel used to
compute the novelty features.

photo i with its novelty scores at each scale,

Ni ≡

N (K1, i)
...

N (KM , i)

 =

 νK1(i)
...

νKM (i)

 . (4)

We expect that event boundaries will correspond to local
maxima in the novelty scores at a range of scales. At the
same time, typical photos in the interior of an event will not
correspond to maxima in the novelty scores (at any scale).
The LVQ is designed to provide effective event detection by
discriminating between these classes.

Learning vector quantization uses positive and negative
examples to select the codebook vectors. In the training
phase, a codebook is calculated using an iterative procedure.
At each step, the nearest codebook vector to each training
sample is determined, and it is shifted towards the training
sample if they are members of the same class, and away from
the training sample otherwise. Specifically, if c denotes the
index of the nearest codebook vector Mc to the training
sample Nx, then Mc is updated at iteration t + 1 as,

Mc(t + 1) =


Mc(t) + α(t)(Nx −Mc(t))

if Nx and Mc are in the same class,

Mc(t)− α(t)(Nx −Mc(t))

if Nx and Mc aren’t in the same class.

(5)
α is a scalar between zero and one that decreases with t.

Here, the LVQ codebook discriminates between the two
classes “event boundary” and “event interior.” We calculate
the LVQ from a labelled subset of the columns of N . In clas-
sification, the LVQ takes in the novelty data Ni for photos
not belonging to the training set and returns the estimated
class membership. We construct the LVQ and perform test-
ing using LVQ PAK [15]. The codebook vectors for each
class are used for nearest-neighbor classification [16] of the
novelty features for each photo in the test set.

While the approach is non-parametric and discriminative,
the key disadvantage is that the decisions for each photo are
independent. For example, there are no priors or constraints
imposed that prevent two consecutive photos from both be-
ing classified as event boundaries, although this is unlikely
in practice. An advantage of supervised techniques is that a
separate LVQ can be trained for each photographer to cap-
ture user-specific habits in camera use and preferences in
event definition. For instance, different photographers may
consider a two-week vacation to be either a single event or

multiple events. The LVQ will be likely to accommodate
this preference if events with appropriate lengths are well
represented in the training data for each photographer.

Algorithm 1. [LVQ-based Photo Clustering]

1. Calculate novelty features from labelled training data
for each scale K ∈ K:

(a) Compute the similarity matrix SK using (2).

(b) Compute the novelty score νK of (3).

2. Train LVQ using the iterative procedure of (5). This
can be done off-line.

3. Calculate novelty features for the testing data for each
K ∈ K

(a) Compute the similarity matrix SK using Eq. (2).

(b) Compute the novelty score νK of Eq. (3).

4. Classify each test sample’s novelty features Ni using
the LVQ codebook and the nearest-neighbor rule.

5. UNSUPERVISED EVENT CLUSTERING
In this Section, we present three unsupervised algorithms

for event detection. The first is based on scale-space analysis
of the raw timestamp data. The second algorithm processes
the multi-scale novelty features of Section 3.2. The final al-
gorithm processes novelty features extracted from similarity
matrices that combine temporal and content-based features.

5.1 Scale-space analysis
Scale-space analysis is a technique for assessing structure

at multiple scales in a data set. Later, we compare the re-
sults of analysis based on the multi-scale novelty features
above, with more traditional scale-space features [11, 12].
For the comparison, we operate on the raw timestamps,
T0 = [t1, · · · , tN ]T so that T0(i) = ti. Gaussian filters of
varying standard deviation are applied to the sequence of
timestamps to generate a set of signals

Tσ(i) = T0(i) ∗ γ(i, σ) , (6)

=
1√

2πσ2

L∑
j=−L

T0(i− j)e
− j2

2σ2 , (7)

where 2L + 1 is the extent of the filter γ. Arranging these
filtered signals in rows creates a two-dimensional represen-
tation: T (σ, i) = Tσ(i). Peaks in the derivative with respect
to i (the photo index) are calculated for each value of σ,
indicating segment boundaries. Peaks are “traced” from
the larger values to the smaller values of σ, and can be ana-
lyzed to assess the importance of the corresponding segment
boundary. For event clustering, we use the following algo-
rithm in the experiments discussed later. The form of (7)
resembles the kernel correlation of (3). The difference is
that the scale parameter is embedded in the similarity data
in (3). Additionally, the similarity matrix includes compar-
isons between features from both non-adjacent and adjacent
pairs of photos.



Algorithm 2. [Scale-space Photo Clustering]

1. Extract timestamp data from photo collection:
{t1, · · · , tN}

2. For each σ in descending order

(a) Compute Tσ as in (7).

(b) Detect peaks in Tσ, tracing peaks from larger scales
to smaller scales.

We do not include a final step for peak selection. In prac-
tice, various criteria are used to select the peaks in scale
space that comprise the final event segmentation (e.g. see
[12]). We use L = 10 in the experiments of Section 6.

5.2 Time-based similarity analysis
The similarity-based approach processes the novelty mea-

sures of (3). We first locate peaks at each scale K ∈ K
by analysis of the first difference of each νK , proceeding
from coarse scale to fine (decreasing K). We threshold de-
tected peaks as a function of the maximum novelty for a
data-independent approach. The maximum possible nov-
elty score is determined by the similarity measure (which
has maximum one here) and the kernel correlated along the
main diagonal of the similarity matrix. To build a hierarchi-
cal set of event boundaries, we include boundaries detected
at coarse scales in the boundary lists for all finer scales.

SSSS
bl

bl+1

bl+2

bl bl+1 bl+2

Figure 6: Computing a confidence score for clus-
tering. The dark regions represent within-cluster
similarity, while the gray regions represent between-
cluster similarity.

This procedure results in a list of cluster boundaries and
strengths at multiple resolutions. In traditional scale-space
analysis, the number of scales over which a peak can be
traced has been used to assess its importance as a bound-
ary. Our current approach is to select a single, best, resolu-
tion level. To determine the “goodness” of the boundaries
at a given time scale, we calculate a confidence measure
from the average within-class similarity and the between-
class dissimilarity of the data. Denote the detected bound-
aries at each level, BK = {b1, · · · , bnK}, indexed by photo:

BK ⊂ {1, · · · , N}. For convenience, assume that b1 = 1 and
bnK = N for all K. We then compute the confidence score

C(BK) =

|BK |−1∑
l=1

bl+1∑
i,j=bl

SK(i, j)

(bl+1 − bl)2

−
|BK |−2∑

l=1

bl+1∑
i=bl

bl+2∑
j=bl+1

SK(i, j)

(bl+1 − bl)(bl+2 − bl+1)
.

(8)

The first term above quantifies the average within-class sim-
ilarity between the photos within each cluster. The second
term quantifies the average between-class similarity between
photos in adjacent clusters. By negating this term, the con-
fidence measure thus combines each cluster’s average self-
similarity and the dissimilarity between adjacent clusters.
Fig. 6 illustrates the idea graphically. The within-class sim-
ilarity terms are the means of the terms of darker regions
along the main diagonal. The between-class terms are the
means of the off-diagonal gray regions. Algorithm 3 details
the computational steps.

Algorithm 3. [Similarity-based Photo Clustering]

1. Extract and sort photo timestamps, {t1, · · · , tn}.

2. For each K in decreasing order

(a) Compute the similarity matrix SK using Eq. (2).

(b) Compute the novelty score νK of Eq. (3).

(c) Detect peaks in νK .

(d) Form event boundary list using event boundaries
from previous iterations and newly detected peaks.

3. Compute confidence score using list of event bound-
aries, BK for each K following Eq. (8).

4. Select event boundary list for K maximizing the confi-
dence score.

5.3 Time and content-based analysis
We have also implemented a variant of this method which

jointly processes content-based features and the photos’
timestamps. In particular, we construct a content-based
matrix SC using low frequency DCT features and the cosine
distance measure of (1). One possibility is to use a (piece-
wise) linear function of the inter-photo time difference to
combine SC with each of the SK of (2):

S
(J)
K (i, j) =

{
SK(i, j) if |ti − tj | > 48 hours
αSK(i, j) + (1− α)SC(i, j) otherwise.

(9)

where α =
|ti − tj |
48hours

Again, K indexes the family of similarity measures per (2).

In this case, S
(J)
K relies less on content-based similarity as the

inter-photo time difference grows. Alternately, we combine
the temporal and content-based similarity measures to build

the family of matrices, S
(J)
K according to

S
(J)
K (i, j) =

{
SK(i, j) if |ti − tj | > 48 hours
max(SC(i, j),SK(i, j)) otherwise.

(10)



Table 1: The algorithms used in our experiments. The second column indicates whether the algorithm is
supervised (Sup.) or unsupervised (Unsup.).

Algorithm Sup. Application Description

Adaptive Threshold 1 Unsup. Hand-tuned adaptive threshold of inter-photo time difference: see [7]
Adaptive Threshold 2 Unsup. Hand-tuned adaptive threshold of inter-photo time difference: see [3]

Threshold Unsup. Hand-tuned fixed threshold of inter-photo time difference
Scale-space Unsup. Hand-tuned fixed threshold of peaks in scale-space: see Section 5.1

LVQ Sup. Automatic nearest-neighbor classifier: see Section 4
Temporal Similarity Unsup. Automatic automatic peak detection from novelty scores: see Alg 3

Joint Similarity Unsup. Automatic automatic peak detection from novelty scores: see Section 5.3

The heuristic used to build S
(J)
K emphasizes temporal sim-

ilarity, which is generally more reliable for organization.
However, image similarity can dominate for photos with suf-
ficient temporal proximity and high content-based similarity.
In our experience, the method of (10) has consistently out-
performed that of (9), and we use (10) in the comparative

evaluation below 1. For the experiments, we substitute S
(J)
K

into step 2(a) of Algorithm 3. In future work, we hope to
examine other techniques for combining content-based and
temporal information for photo organization. In addition,
there are numerous other content-based features worth in-
vestigating in this framework.

[7] [3] Threshold Scale−space LVQ Temporal Joint 
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Figure 7: Experimental comparison of several algo-
rithms for photo event clustering.

5.4 Computational complexity
We review the computational complexity of Algorithm

3. Sorting the N timestamps is O(N log(N)). Comput-
ing the entire similarity matrix is O(N2). In practice, we
pre-compute only the portion of the pairwise distance ma-
trix along the main diagonal with width ` as in (3), and next
evaluate (2) for each scale. Peaks are detected in each of the
N -dimensional novelty scores by computing first differences.
The complexity of the evaluation of the confidence score is

1Using (9), the results for Collection I of Table 2 are preci-
sion = 0.8, recall = 0.62, F-score = 0.7. For Collection II,
precision = 0.74, recall = 0.78, F-score = 0.76.

more difficult. It is this step that potentially necessitates the
computation of the entire lookup table, since the extent of
events can’t be assumed in advance (otherwise, the lookup
table could be limited to the same strip around the main
diagonal of width 2 · ` = 12). In the worst case, the sums
of (8) include all N2 terms of SK . Thus, given the lookup
table of inter-photo time differences, the computation of the
M -dimensional feature vectors of (4) is O(N ·M). Because
the temporal similarity measure decays exponentially as the
time difference increases, we can also reduce the complexity
using a mask which zeros out elements of the matrix cor-
responding to photo pairs taken far apart in time. Other
heuristics can also be used to construct masks based on the
number of photos taken between a pair of photos.

We have not found these speedups to be necessary. In
practice, we provide a fully automatic solution by using the
confidence measure to select a single scale for the detected
event boundaries. To quantify this point we include repre-
sentative runtimes for the temporal-version of Algorithm 3
on a collection of 3931 photos in Table 3. The column la-
belled “No Conf.” is the time for step 2 in the algorithm.
The column labelled “Conf.” is the time for the entire algo-
rithm. The event detector has been implemented in java as
part of the application documented in [6], and the times here
were produced using a PC with a 2.4 GHz Pentium 4 pro-
cessor. As predicted, after doubling the number of photos
processed (N), the time for the segmentation step increases
linearly, while including the confidence measure incurs an
exponential cost. Nonetheless, the overall runtime is fast,
even for a reasonably large number of photos. In practice,
content-based processing, such as thumbnail extraction, is
more computationally expensive than event detection, and
for temporal similarity, we process only a single scalar fea-
ture per image.

Table 3: The tables documents run times for a typ-
ical photo collection. The times are in seconds.

Run times (3931 photos total)
N No Conf. Conf.

983 0.062 0.9125
1966 0.086 2.818
3931 0.164 8.152



Table 2: The two tables summarize our experimental results.

Collection I
Algorithm Precision Recall F-score

Adaptive Threshold 1 0.39 1.0 0.56
Adaptive Threshold 2 0.38 1.0 0.55

Threshold 0.72 0.95 0.82
Scale-space 0.86 0.79 0.83

LVQ 0.71 0.80 0.76
Temporal Similarity 0.884 0.807 0.83

Joint Similarity 0.9 0.79 0.84

Collection II
Algorithm Precision Recall F-score

Adaptive Threshold 1 0.42 1.0 0.6
Adaptive Threshold 2 0.29 1.0 0.45

Threshold 1.0 0.85 0.92
Scale-space 1.0 0.83 0.91

LVQ 0.63 0.94 0.76
Temporal Similarity 0.89 0.89 0.89

Joint Similarity 0.84 0.89 0.86

6. EXPERIMENTAL RESULTS
In the previous Sections, we reviewed and presented sev-

eral algorithms for event detection. Here, we compare the
event clustering performance of seven algorithms on two sep-
arate photo collections. Collection I consists of 1036 photos
taken over 15 months, and Collection II consists of 413 pho-
tos taken over 13 months. All photos had accurate times-
tamps, and the photos were assigned to meaningful events by
the respective photographers. Photos in each event were se-
quential, and event classifications were used as ground truth
for our clustering experiments. Table 1 enumerates the al-
gorithms used in the evaluation. The first four Algorithms
in the Table are “hand-tuned” to maximize performance, as
quantified by the F-score defined below (Equation 13).

“Adaptive Threshold 1” is based on [7] and “Adaptive
Threshold 2” is based on [3]. The two algorithms are closely
related and both compare the time difference between suc-
cessive photographs to a variable threshold based on the
logarithm of the average inter-photo time difference over a
local window. Event boundaries occur where the time dif-
ference between photos exceeds the threshold. To determine
if this worked better than simple thresholding, we skipped
their thresholding step and examined the first level of the
hierarchy created. The threshold approach is a simple fixed
threshold applied to the inter-photo time difference. This
threshold is manually adjusted to vary the resulting preci-
sion and recall. To test the scale-space approach, we de-
tected boundaries using a simple threshold-based peak de-
tector applied to the filtered signal Tσ for each scale. We
employ cross-validation to include the LVQ-based event de-
tector in the comparison. We divide the photos into three
(approximately equal) sets of photos for testing. For each
test set, we train an LVQ using the remaining data and the
its ground truth labelling. The results of the three sepa-
rate tests are combined for comparison with the remaining
unsupervised approaches.

The precision, recall, and F-score for the detected event
boundaries appear in Table 2 for each algorithm. These
measures are common figures of merit in information re-
trieval that are also used to assess segmentation performance
[17]. Precision indicates the proportion of falsely labelled
boundaries (over-segmentation):

precision =
correctly detected boundaries

total number of detected boundaries
. (11)

Recall measures the proportion of true boundaries detected:

recall =
correctly detected boundaries

total number of ground truth boundaries
. (12)

The F-score is a composite of precision and recall:

F-score =
2× precision × recall

precision + recall
. (13)

Notice that the various thresholds are manually adjusted to
maximize the F-score for Adaptive Threshold 1, Adaptive
Threshold 2, the scale-space, and the simple threshold al-
gorithms. There is no tuning of the LVQ-based method to
improve its results. The temporal similarity and joint simi-
larity algorithms are both fully automatic.

The adaptive-thresholding algorithms exhibit high recall
and low precision on both test sets, even with manual tun-
ing. The LVQ event detector performs better, at least in
terms of the F-score. However, it also sacrifices precision
for higher recall, and performs slightly worse than the man-
ually tuned threshold and scale-space event detectors. The
scale-space and the two similarity-based approaches demon-
strate more consistent performance and trade off precision
and recall more evenly. As well, the automatic similarity-
based algorithms approach the performance of the manually
tuned algorithms. The performance on both collections is
combined in a weighted average according to the sizes of
the two test collections in the bar plot of Figure 7. In that



graph, [7] and [3] corresponds to the algorithms Adaptive
Threshold 1 and Adaptive Threshold 2, respectively.

Figure 8: This screen shot shows a user adjusting
the results of the automatic event detection in our
photo organization application. The user need only
drag the thumbnail onto the label for the desired
event.

7. SUMMARY
We have presented several approaches to automatic event

clustering for digital photo collections. The basic framework
is to first quantitatively assess structure in the collection at
multiple scales, and then feed this data into several different
classifiers. Supervised and unsupervised algorithms were de-
veloped and presented, and compared to existing approaches
on two sets of test data. We intend to improve our super-
vised algorithm using robust statistical techniques to mit-
igate the impact of outliers in the training data. We are
also developing approaches to building event boundary lists
directly the hierarchical boundary tree, as alternatives tot
he confidence measure of (8). Such an approach will accom-
modate variability in event duration through a large photo
collection.

In practice, we employ the automatic temporal similarity-
based method (Algorithm 3 of Section 5.2). It has been
well received by the pilot users of our application for orga-
nizing digital photos [6]. For the most part, users did not
need to change the automatically detected event boundaries
and found it straightforward to assign meaningful titles to
the detected event clusters. Figure 8 shows a collection of
photos organized by events in the application. The photos
appear in time order in the light table. Each event is de-
noted by a colored label with a name in both the light table
pane (right) and the tree pane (left). The events are au-
tomatically named using the photos’ dates, unless renamed
by the user. The photos in the event follow the event la-
bel in the rows in the light table. To change photos’ event

membership, users simply drag and drop thumbnails onto
the desired event label.

The similarity-based approach has significant advantages
over existing techniques. It is very general and allows for the
future integration of content-based features or other relevant
metadata such as GPS information. Here, we included an
initial attempt at combining metadata and content-based
features in (10). Other heuristics, weighting schemes, or
combinations of multiple similarity measures can also be
used to integrate the heterogenous features and metadata
describing the photos for automatic organization. While ex-
isting approaches typically only consider the similarity be-
tween adjacent photos (such as comparing their time differ-
ence to a threshold), the novelty measure of (3) is based
on similarity comparisons between all possible photo pairs
in a local neighborhood. Additionally, our approach does
not rely on preset thresholds or restrictive assumptions and
should generalize better to different image collections.
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