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ABSTRACT
In this paper, we compare several recent approaches to video
segmentation using pairwise similarity. We first review and
contrast the approaches within the common framework of
similarity analysis and kernel correlation. We then combine
these approaches with non-parametric supervised classifica-
tion for shot boundary detection. Finally, we discuss com-
parative experimental results using the 2002 TRECVID shot
boundary detection test collection.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Content Anal-
ysis and Indexing—Indexing methods

General Terms
algorithms, management

Keywords
temporal media indexing and segmentation

1. INTRODUCTION
Numerous video retrieval and management tasks rely on

accurate segmentation of scene boundaries. Many exist-
ing systems compute frame-indexed scores quantifying local
novelty within the media stream. The novelty scores are cal-
culated in two steps. First, an affinity or similarity matrix
is generated, as in Figure 1. Next, the frame-indexed score
is computed by correlating a small kernel function along the
main diagonal of the similarity matrix. Typically, detected
local maxima in the novelty score are labelled as segment
boundaries.

In this paper, we compare several kernels used for media
segmentation based on similarity analysis. We first review
similarity analysis in Section 2. Section 3 examines each of
the kernels used to produce a frame-indexed correlation or
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Figure 1: Diagram of the similarity matrix embed-
ding.

novelty score. Section 4 presents comparative experimen-
tal results for shot boundary detection using the TRECVID
data and evaluation tools [1]. In the first experiment, we
use the different kernels and corresponding novelty scores as
input to a binary K-nearest-neighbor (KNN) classifier that
labels frames as either cut boundaries or non-boundaries. In
the second experiment, we directly use the pairwise similar-
ity data as input to train and test the KNN classifier. For
this experiment, we vary the specific local set of similarity
data again according to the proposed choices of kernels.

2. SIMILARITY ANALYSIS

2.1 Matrix embedding
We detect scene boundaries by quantifying the similarity

between pairs of video frames. First, low-level features are
computed to represent each frame. Throughout this paper,
we extract histograms in the YUV colorspace; these features
are a common choice for segmentation, e.g. [2]. Denote the
frame-indexed feature data V = {Vn : n, = 1, · · · , N}. A
measure D of the similarity between frame parameters Vi

and Vj is calculated for every pair of video frames i and
j. The similarity matrix S contains the similarity measure
calculated for all frame combinations, as depicted in Figure
1. Throughout this paper, we compare feature vectors using
the squared Euclidean vector distance:

S(i, j) = D(Vi, Vj) ≡ ‖Vi − Vj‖2 . (1)

This choice for D measures dissimilarity. Time, or the frame
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index, runs along both axes as well as the diagonal. S
has minimum dissimilarity (zero) along the leading diago-
nal where each frame is compared to itself. Because D is
symmetric, S is also symmetric.

2.2 Kernel-based features
Segment boundaries exhibit a distinct pattern in S. Specif-

ically, the frames comprising coherent segments exhibit low
within-segment dissimilarity, creating square regions along
the main diagonal of S with low values. The boundary be-
tween two such segments produces a checkerboard pattern in
S if the two segments have high between-segment dissimilar-
ity, creating rectangular regions off the main diagonal with
high values. This suggests that finding the scene bound-
ary transitions is as simple as finding the checkerboards
along the main diagonal of S. This can be done using a
matched filter: correlating S with a kernel, K, that itself
looks like a checkerboard [3]. The correlation produces a
frame-indexed novelty score that can be processed to detect
segment boundaries. Specifically, define the kernel correla-
tion, or equivalently, novelty score:

ν(n) =

L−1∑
l=−L

L−1∑
m=−L

K(l, m)S(n + l, n + m) . (2)

By varying the kernel width L, the novelty score can be
tuned to detect boundaries between segments of a specific
minimum length. The kernel function can be viewed as a
generalization of the local linear processing of adjacent frame
differences used for segmentation. As discussed in Section
3, several different kernels have been proposed.

Calculating S requires O(N2) computations, where N is
the number of frames. In practice, there is no reason to
calculate similarity matrix values beyond the extent of the
kernel, i.e. elements S(i, j) where |i − j| > L. Addition-
ally, because both S and K are typically symmetric, many
computations are redundant. For this reason, we compute
only a small portion of S near the main diagonal, and the
algorithmic complexity is O(N).

3. RELATED WORK
There is a vast literature on video segmentation, includ-

ing comparative reviews such as [4]. Here, we review only
the algorithms used in the experiments of Section 4. Each
algorithm is characterized by a specific kernel used to gen-
erate a novelty score per (2). For comparison, we empha-
size the differences between the kernels in terms of their
relative weighting of the elements of S to form the novelty
scores. Figure 2 graphically depicts the kernels considered
here. In each panel, a blank element does not contribute to
the corresponding novelty score (i.e. K(l, m) = 0 in (2)).
The elements containing solid circles contribute positively
to the novelty score (K(l, m) > 0). The elements contain-
ing unfilled circles contribute negatively to the novelty score
(K(l, m) < 0). Notice that the elements along the main di-
agonal of K align with the main diagonal elements of S in
the correlation, where S(n, n) = D(Vn, Vn) = 0.

The results of comparing adjacent video frames appear in
the first diagonal above (and below) the main diagonal, i.e.
the elements S(n, n + 1). Scale space analysis [5] is based
on applying a kernel of the form shown in Figure 2(a). The
full analysis uses a family of Gaussian kernels of varying
standard deviation to calculate a corresponding family of

(a) (b)

(c) (d)

Figure 2: The figure shows different kernels pro-
posed for segment boundary detection via kernel
correlation (L = 4). The kernels correspond to
scale-space analysis (a), diagonal cross-similarity
(b), cross-similarity (c), and full similarity (d).

novelty scores. Define the 2L × 2L scale space (SS) kernel
as:

K
(σ)
SS (l, m) =

{
1

Z(σ)
exp

(
− l2

2σ2

)
|l − m| = 1

0 otherwise
. (3)

where Z(σ) is a normalizing factor1. Scale-space analysis
was used in [6] for video segmentation.

Pye, et al. [7], presented an alternative approach using
kernels of the form of Figure 2(b). When centered on a
segment boundary, this kernel weights only elements of S
that compare frames from different segments. This kernel is
defined:

KDCS(l, m) =

{
1

2L
|l − m| = L

0 otherwise
. (4)

We refer to this kernel as the diagonal cross-similarity (DCS)
kernel, as the elements of S for which KDCS > 0 lie on
the Lth diagonal above (and below) the main diagonal of
S. KDCS has been used in the segmentation systems by
Pickering et al. [8].

Building on these intuitions, we present two additional
kernels for comparison. Including all the inter-segment el-
ements implies the kernel of Figure 2(c). This kernel “in-
cludes” the DCS kernel, and adds the remaining between-
segment (cross-similarity) terms within the kernel’s tempo-
ral extent. The cross-similarity (CS) kernel is defined:

KCS(l, m) =


1

2L2 l ≥ 0 and m < 0
1

2L2 m ≥ 0 and l < 0

0 otherwise

. (5)

For the Euclidean distance of (1), this kernel is precisely the
matched filter for an ideal cut boundary in S. The inter-

1The SS and DCS kernels are easily defined using a sin-
gle variable, i.e. l, but we use the two variables (l, m) for
consistency.
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segment (cross-similarity) terms will be maximally dissimi-
lar, while the intra-segment terms will exhibit zero dissimi-
larity.

The final kernel Figure 2(d) is the full similarity (FS) ker-
nel used in [3], and it includes both between-segment and
within-segment terms. This kernel replaces the zero ele-
ments in KCS with negative weights. The negative weights
penalize high within-segment dissimilarity:

KFS(l, m) =


1

2L2 l ≥ 0 and m < 0
1

2L2 m ≥ 0 and l < 0

− 1
2L2 otherwise

. (6)

4. EXPERIMENTAL RESULTS
In this section, we examine cut boundary detection using

pairwise similarity features. For each frame, we extract a
global YUV histogram, and block YUV histograms using a
uniform 4×4 grid. We then compute separate similarity ma-
trices for the global histogram data, S(G) and for the block
histogram data, S(B). For the experiments, we follow the
approach of [9] and employ supervised binary classification
for boundary detection. We use an efficient implementation
of KNN classification [10] to label each frame as either a
boundary or non-boundary. This algorithm offers potential
speedups of a factor of 20 over the naive implementation
of KNN, as tested on video data. This allows a consistent
boundary detection scheme for comparing the various ker-
nels in the testing below. We concatenate frame-indexed
data computed from S(G) and S(B) to train and test the
KNN classifier to detect cut (abrupt) segment boundaries.

For testing, we use the TRECVID 2002 test data and
evaluation software for the shot boundary detection task [1].
This data was viewed as poorer quality than the 2001 data
used in [9]. From TRECVID 2002, the average recall and
precision for cut detection was 0.86 and 0.84, respectively [8].
The test set consists of almost 6 hours of video containing
1466 cut transitions, per the manual ground truth. For the
KNN training, we use cross-validation and train separate
classifiers for each video using the remaining videos in the
test set. The results are combined for the entire test set.
Throughout, K = 11.

4.1 Kernel-based features
We present results for two sets of experiments. In the

first, we produce novelty features for shot boundary detec-
tion corresponding to kernels of extent L = 2, 3, 4, 5. For
each L, we compute a frame-indexed kernel correlation sep-
arately using S(G) and S(B) following (2). We concatenate
these novelty scores across scale, so that we have four scores
for each frame for both the global and the block histogram
features. We finally combine this data into a single 8 × 1
vector to represent each frame n:

Xn =

[
ν
(G)
2 (n) ν

(G)
3 (n) ν

(G)
4 (n) ν

(G)
5 (n)

ν
(B)
2 (n) ν

(B)
3 (n) ν

(B)
4 (n) ν

(B)
5 (n)

]T

.

where ν
(G)
L denotes the novelty score computed using S(G)

with kernel width L, and ν
(B)
L denotes the novelty score

computed using S(B). We use the input data X = {Xn :

n = 1, · · · , N} with the manual ground truth to train and
test the KNN classifier.

We control the sensitivity of the KNN classification using
an integer parameter κ : 1 ≤ κ ≤ K. If at least κ out of
the K nearest neighbors of the vector Xn in the training
data are from the “cut” class, we label frame n as a cut and
otherwise label it as a non-cut. κ is varied to produce the
recall-precision curves of Figure 3 for the FS kernel (circle),
the CS kernel (“x”), the SS kernel (square), and the DCS
kernel (“+”). The best performance is achieved by the CS
and the DCS kernels. As noted above, the CS kernel is the
matched filter for the expected pattern produced by segment
boundaries in S. Both the CS and DCS kernels emphasize
dissimilarity between the segments evident at multiple time
scales. The FS kernel performs worst, we believe due to the
choice of the Euclidean dissimilarity measure. The FS kernel
may be better suited to dissimilarity measures that take
positive and negative values such as the cosine similarity
measure.
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Figure 3: Experimental results for cut detection us-
ing the kernel-based features.

4.2 Pairwise similarity features
In the second experiment, we examine performance using

the raw pairwise similarity data (without kernel correlation)
as input to the KNN classifier. This approach does incur
a computational penalty by increasing the dimensionality
of the input data X for classification. Again, we use the
separate similarity matrices S(G) and S(B). For each kernel,
we construct the input feature vectors from those elements of
S(G) and S(B) that contribute to the corresponding novelty
score for L = 5. For example, for the SS features (Figure
2(a)) frame n is represented by the column vector:

Xn =

[
S(G)(n − 5, n − 4) S(G)(n − 4, n − 3) · · · S(G)(n + 4, n + 5)

S(B)(n − 5, n − 4) S(B)(n − 4, n − 3) · · · S(B)(n + 4, n + 5)

]T

and for the DCS features (Figure 2(b)):

Xn =

[
S(G)(n − 5, n) S(G)(n − 4, n + 1) · · · S(G)(n − 1, n + 4)

S(B)(n − 5, n) S(B)(n − 4, n + 1) · · · S(B)(n − 1, n + 4)

]T
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Figure 4: Experimental results for cut detection us-
ing the pairwise similarity features.

We only include elements above the main diagonal of S since
S and K are symmetric.

The results appear in Figure 4. In this case, the additional
similarity information included in the FS data improves per-
formance. The scale-space approach, however outperforms
the CS features. This is not surprising since cut detection
performance relies largely on first order (adjacent frame)
similarity, which is not emphasized by either the CS or DCS
features. We also include performance for “row” features
(triangle) following [9] where each frame n is represented by
the 2L × 1 vector:

Xn =

[
S(G)(n, n − 1) S(G)(n, n − 2) · · · S(G)(n, n − L)

S(B)(n, n − 1) S(B)(n, n − 2) · · · S(B)(n, n − L)

]T

.

Figure 5 shows the curves for all the approaches tested
on a single plot. The dashed curves show performance us-
ing the kernel-based features, and the solid curves show the
performance using the pairwise similarity features. The use
of the pairwise similarity data corresponding to the FS ker-
nel shows the best overall performance. All the approaches
perform at a high level as input to the KNN classification.

5. CONCLUSION
In this short paper, we have presented preliminary results

of an empirical comparison of similarity-based approaches to
shot boundary detection. We presented several techniques
in a common framework based on kernel correlation of a sim-
ilarity matrix, and compared them experimentally via test-
ing in combination with supervised classification. Generally,
the pairwise similarity features demonstrate superior perfor-
mance over local correlation-based features. Additionally,
we expect that using the pairwise similarity data will ben-
efit the classification of boundaries into subclasses, such as
abrupt (cut) versus gradual transitions. There is a complex-
ity tradeoff here, because gradual boundaries require larger
values for L which can result in a quadratic increase in the
dimensionality of the representation Xn for each frame n.
Exploring this tradeoff and integrating gradual transition
detection is a key aim of current research. We also intend to
continue this study by integrating additional features and
broadening the test collection.
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Figure 5: Combined experimental results from Fig-
ures 3 and 4.
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